
DELIGHT LABS � Terraswap Security Audit

 � Terraswap

Jul 21, 2023

Revision 1.1

ChainLight@Theori

Theori, Inc. (“We”) is acting solely for the client and is not responsible to any other party.
Deliverables are valid for and should be used solely in connection with the purpose for which they
were prepared as set out in our engagement agreement. You should not refer to or use our name
or advice for any other purpose. The information (where appropriate) has not been verified. No
representation or warranty is given as to accuracy, completeness or correctness of information in
the Deliverables, any document, or any other information made available. Deliverables are for the
internal use of the client and may not be used or relied upon by any person or entity other than
the client. Deliverables are confidential and are not to be provided, without our authorization
(preferably written), to entities or representatives of entities (including employees) that are not
the client, including affiliates or representatives of affiliates of the client.

© 2023 ChainLight, Theori. All rights reserved

1
2
3
5
5
6
9

10
11
12
12
13
16
19
22
24
26
30
33
34

Table of Contents

DELIGHT LABS � Terraswap Security Audit
Table of Contents
Executive Summary
Audit Overview

Scope
Code Revision
Severity Categories
Status Categories
Finding Breakdown by Severity

Findings
Summary
#1 TERRASWAP�001 provide_liquidity() is susceptible to sandwich attacks
#2 TERRASWAP�002 withdraw_liquidity() is susceptible to sandwich attacks
#3 TERRASWAP�003 Pool can be emptied via a huge swap
#4 TERRASWAP�004 Router should adopt the deadline argument
#5 TERRASWAP�005 Commission is rounded down in compute_swap()
#6 TERRASWAP�006 Insufficient integer overflow handling in provide_liquidity()
#7 TERRASWAP�007 Code maturity improvement suggestions
Appendix: Test Methodologies
Revision History

 DELIGHT LABS � Terraswap Security Audit | 2© 2023 ChainLight, Theori. All rights reserved

Executive Summary

Starting on October 17th, ChainLight of Theori and DreamAcademy assessed the smart contracts for
Terraswap code base. We focused on identifying issues that result in a loss of funds and any lack of
security mitigations which protect the end-users by comparison analysis with UniswapV2.

We evaluated the correctness, security, and code maturity of the Terraswap code base. We wrote
test cases with high code coverage and checked the correctness of the contracts. Additionally, we
have conducted comparison analysis with UniswapV2. This process helped us recognize security
issues efficiently by pointing out regions within the code that should be looked for especially
carefully.

We have discovered a total of 6 security relevant issues, and 3 of them were evaluated to be of high
impact. However, all of them are exploitable only under limited circumstances, and thus we believe
the probability of observing an in-the-wild attack is minute. We also made recommendations for
improving code maturity improvement.

 DELIGHT LABS � Terraswap Security Audit | 3© 2023 ChainLight, Theori. All rights reserved

Contact Info

ChainLight, chainlight@theori.io

https://chainlight.io/

ChainLight’s mission is to make the Web3 ecosystem more secure and enable our customers and
users to grow without fear of security threats. We proactively counteract bad actors that steal funds
from Web3 projects and protect users by finding vulnerabilities in Web3 applications quickly and
efficiently. We offer manual security auditing services from experienced auditors as well as
automated analysis tools that enable customers to discover and remediate critical security issues
ahead of time. Customers can integrate our product into their CI infrastructure to continuously scan
for security vulnerabilities. We will develop and employ state-of-the-art program analysis techniques
as well as financial modeling techniques to ensure security and future solvency of Web3 projects. We
seek to share our discovery and techniques with the wider open-source community.

DreamAcademy

https://dream-academy.io/

DreamAcademy is an educational program operated by ChainLight of Theori and HanWhaLife. Its
mission is to nurture Web3 security talents through a well-organized curriculum and real-world,
hands-on experiences. The whole process was done under the guidance of ChainLight, and the
following people conducted this assessment; Woosun Song �Lead), Woosung Jung, Eunyeong Ahn,
and Jihyun Yoo.

 DELIGHT LABS � Terraswap Security Audit | 4© 2023 ChainLight, Theori. All rights reserved

file:///usr/src/app/outmailto:chainlight@theori.io
https://chainlight.io/
https://dream-academy.io/

Audit Overview

Scope

Name DELIGHT LABS � Terraswap Security Audit

Target /
Version

We reviewed the smart contracts for DELIGHT LABS’s Terraswap Protocol. The
code was retrieved on October 17th, 2022, from:

Git Repository (terraswap) (WASM contracts): commit
3962e4c659181ce7a49769af75cfad1d7125c938

Application
Type

Smart contracts

Lang. /
Platforms

Smart contracts �WASM�

Code Revision
The ability to provide_liquidity execute with create_pair has revision. The revision code
review was completed, and it was confirmed that there was no security problem.

commit 859feca56b66a63da75cfec9742c994d1791157d

In addition to that, minor fixes.

Add minimum_liquidity in provide_liquidity() : commit
ac2e5656a0e13e59b5fc85b0bded780922a21395

Add slippage_tolerance to provide_liquidity() : commit
8626dbe1da12a2a2b0107c07f763e3f55b9edf0b

Overview

The assessment focused on the following items.

Correctness

 DELIGHT LABS � Terraswap Security Audit | 5© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/pull/65/commits/ac2e5656a0e13e59b5fc85b0bded780922a21395
https://github.com/terraswap/terraswap/pull/65/commits/8626dbe1da12a2a2b0107c07f763e3f55b9edf0b

Check that the contracts strictly adhere to the specifications. We do not perform any sort of formal
verification; we inductively reason the correctness via thorough and extensive tests.

Security

Devise exploit scenarios that may result in the backend contract / end user / liquidity provider to
suffer loss. Also, DoS attacks and undesired locking of assets are also put into consideration.

Adherence to Precedent Protocols

Similarities with precedent DEX protocols such as UniswapV2 is a desirable property for multiple
reasons. First, it eases the entry of users who have experience with those protocols. Second, such
protocols have been thoroughly audited over a relatively long time, making them trustworthy
references.

Code Maturity

We looked for code that can be refactored in terms of: gas consumption optimization / syntactic
coherence / readability improvement.

Comparison Analysis Against UniswapV2

We chose UniswapV2 as the pivot of evaluation for the following reasons:

The official documentation of Terraswap mentions Uniswap as a source of inspiration.
UniswapV2 has been audited by multiple parties.
Both contracts have the components factory/router/pair and their end-to-end functionalities are
equivalent.
Although there exist next-generation protocols such as UniswapV3 or Curve Finance, comparing
them with Terraswap failed to yield meaningful conclusions. For example, UniswapV3 implements
concentrated liquidity, which does not exist at all in Terraswap.

Analysis

UniswapV2 Terraswap

Asset
Must use wrapped tokens (ex.
WETH� to exchange on-chain
currencies.

Can handle on-chain currencies
directly without any sort of
wrapping.

 DELIGHT LABS � Terraswap Security Audit | 6© 2023 ChainLight, Theori. All rights reserved

UniswapV2 Terraswap

LiquidityProvision

Router has API for liquidity provision
with slippage mitigations.

withdraw_liquidity is
susceptible to sandwich attacks.

Pair has API for liquidity provision,
but without any slippage mitigations.

Pair has API for liquidity provision
with slippage mitigations.

Pair inherits the IERC20 interface in
order to act as the liquidity token.

The pair and its liquidity token are
located at separate addresses.

Fees are taken upon liquidity
provision.

No fees taken upon liquidity
provision.

Swap

Router has API for swap, with
slippage mitigations. Slippage
mitigation methods are identical:
swap transaction(message) reverts
if minimum output amount is
unfulfilled.

Router has API for swap, with
slippage mitigations. Slippage
mitigation methods are identical:
swap transaction(message) reverts
if minimum output amount is
unfulfilled.

Optimistic swap: Provides the
output asset(s) prior to confirming
the input assets are given.

Pessimistic swap: Does not provide
the output asset(s) until it is
confirmed that the input assets are
given.

Fees are taken from both the assets
of the pool.

Fees are taken only from the ask
asset.

LiquidityWithdrawal

Router has API for liquidity
withdrawal, with slippage
mitigations.

Router has no API for liquidity
withdrawal.

A certain amount
(MINIMUM_LIQUIDITY) of liquidity
tokens are permanently locked.

* It is possible for LPs to remove all
liquidity.

Fees are taken upon liquidity
withdrawal.

No fees taken upon liquidity
withdrawal.

 DELIGHT LABS � Terraswap Security Audit | 7© 2023 ChainLight, Theori. All rights reserved

As a result of the comparison, it is recommended to add MINIMUM_LIQUIDITY because
MINIMUM_LIQUIDITY does not exist, which can lead to a DoS attack by a malicious attacker

when liquidity does not exist.

 DELIGHT LABS � Terraswap Security Audit | 8© 2023 ChainLight, Theori. All rights reserved

Severity Categories

Severity Description

Critical
The attack cost is low (not requiring much time or effort to succeed in the actual
attack), and the vulnerability causes a high-impact issue. (e.g., Effect on service
availability, Attacker taking financial gain)

High
An attacker can succeed in an attack which clearly causes problems in the
service’s operation. Even when the attack cost is high, the severity of the issue is
considered “high” if the impact of the attack is remarkably high.

Medium
An attacker may perform an unintended action in the service, and the action may
impact service operation. However, there are some restrictions for the actual
attack to succeed.

Low
An attacker can perform an unintended action in the service, but the action does
not cause significant impact or the success rate of the attack is remarkably low.

Informational Any informational findings that do not directly impact the user or the protocol.

 DELIGHT LABS � Terraswap Security Audit | 9© 2023 ChainLight, Theori. All rights reserved

Status Categories

Status Description

Confirm
ChainLight reported the issue to the vendor, and they confirm that they
received.

Reported ChainLight reported the issue to the vendor.

Fixed The vendor resolved the issue.

Acknowledged The vendor acknowledged the potential risk, but they will resolve it later.

WIP The vendor is working on the patch.

Won't Fix
The vendor acknowledged the potential risk, but they decided to accept the
risk.

 DELIGHT LABS � Terraswap Security Audit | 10© 2023 ChainLight, Theori. All rights reserved

Finding Breakdown by Severity

Category Count Findings

Critical 1 TERRASWAP-001

High 2
TERRASWAP-002
TERRASWAP-003

Medium 1 TERRASWAP-004

Low 1 TERRASWAP-005

Informational 2
TERRASWAP-006
TERRASWAP-007

 DELIGHT LABS � Terraswap Security Audit | 11© 2023 ChainLight, Theori. All rights reserved

Findings

Summary

ID Title Severity Status

1 TERRASWAP-001
provide_liquidity() is susceptibl

e to sandwich attacks
Critical Fixed

2 TERRASWAP-002
withdraw_liquidity() is susceptib

le to sandwich attacks
High Fixed

3 TERRASWAP-003 Pool can be emptied via a huge swap High Fixed

4 TERRASWAP-004
Router should adopt the deadline ar
gument

Medium Fixed

5 TERRASWAP-005
Commission is rounded down in compu
te_swap()

Low Fixed

6 TERRASWAP-006
Insufficient integer overflow handling i
n provide_liquidity()

Informational Fixed

7 TERRASWAP-007
Code maturity improvement suggestion
s

Informational Fixed

 DELIGHT LABS � Terraswap Security Audit | 12© 2023 ChainLight, Theori. All rights reserved

#1 TERRASWAP-001 provide_liquidity() is susceptible to

sandwich attacks

ID Summary Severity

TERRASWAP-001
provide_liquidity() lacks a proper slippage tolerance

mitigation, exposing it to sandwich attacks.
Critical

Description
Slippage loss mitigation in provide_liquidity() is necessary because an end-user will provide
two assets according to the current pool ratio, which can differ from the pool ratio at the time of
transaction execution. This difference results in the overprovision of one of the assets.

In UniswapV2, both the pair and the router implement APIs for liquidity provision. The API in the pair
is mint() , and has no slippage mitigations. On the other hand, Router02 provides a safe API for
providing liquidity, called addLiquidity() , which mitigates slippage loss by calculating the
amounts of asset0 and asset1 that maximizes the returned LP token amount and transferring only
those amounts. This flow effectively eliminates all loss due to slippage.

Unlike UniswapV2’s implementation, Terraswap’s pair has slippage loss mitigations. Terraswap
mitigates slippage loss by reverting the transaction if the pool ratio and the deposit ratio differs more
than a certain threshold. The threshold is calculated by the formula 1 – slippage_tolerance ,
where slippage_tolerance is an optional argument provided by the contract caller.

However, this implementation is problematic because liquidity provision is not a process where
slippage loss is inevitable, as the implementation of UniswapV2’s addLiquidity() API is
completely loss-free. Terraswap forces users to tolerate some amount of loss even if it is completely
avoidable. If we assume an attacker conspiring with a block validator, it even becomes possible to
maximize other users’ loss continuously and profit from this loss.

 DELIGHT LABS � Terraswap Security Audit | 13© 2023 ChainLight, Theori. All rights reserved

Impact
Critical

In order for the attack to take place, the following conditions must be satisfied: First, the attacker
must be a block validator or a third-party colluding with a block validator. The perks of being a block
validator is that it is possible to reorder transactions within a single block. Second, the attacker must
possess capital that can drastically change the exchange rate of the pair.

We present a toy scenario that describes such an attack. In this scenario, three parties are involved:
an innocent LP, a malicious LP, and a malicious block validator that conspires with the malicious LP.
The pair holds two assets, token A and token B, whose pool sizes have a ratio of 1�1. The attack
begins as the innocent LP issues a transaction containing a provide_liquidity message.
Because the innocent LP sees a pool ratio of 1�1, it will deposit the same amount of token A and
token B to the pair.

�1� The innocent LP sends a provide_liquidity() transaction that deposits 10^5 token A and
10^5 token B. For simplicity, we assumed that slippage_tolerance is set to None . As the
malicious block validator receives the innocent LP’s transaction, it constructs 4 additional transactions
and places them in an appropriate order within the block so that the following sequence of events
take place. �2� The malicious user deposits 10^5 token A and 10^5 token B and becomes a LP. It
receives 10^5 LP tokens, which can be redeemed to 10^5 token A and 10^5 token B. �3� Through the
second transaction, the malicious LP swaps a large amount of token A into token B. This results in

 DELIGHT LABS � Terraswap Security Audit | 14© 2023 ChainLight, Theori. All rights reserved

the pool’s 1�1 balance to shift to approximately 10�1. �4� The innocent LP’s provide_liquidity
transaction is executed. The current pool ratio is approximately 10�1, which results in the
overprovision of Token B. �5� Afterwards, the malicious LP restores the pool ratio by swapping large
amounts of Token B to Token A. �6� The malicious LP removes liquidity and redeems Token A and
Token B. It receives more tokens than 10^5, because of the overprovision in 3. Thus, it is possible to
say that the malicious LP took advantage of the innocent LP.

Recommendation
�1� Create a safe API for liquidity provision in the router. The slippage loss mitigation method must be
identical to UniswapV2’s router: only transferring assets that contribute to according to the pool
ratio, and return the rest. �2� Remove all safety checks �The slippage_tolerance argument and all
code dependent on it) from Terraswap pair. This is done to reduce the gap between Terraswap pair
and UniswapV2’s pair as well as reducing gas consumption caused by redundant checks when using
the router.

Patch
Fixed

The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/0cda95d4950d4933d774141f7dcbab3194015b00

 DELIGHT LABS � Terraswap Security Audit | 15© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/0cda95d4950d4933d774141f7dcbab3194015b00

#2 TERRASWAP-002 withdraw_liquidity() is susceptible to

sandwich attacks

ID Summary Severity

TERRASWAP-002
The withdraw_liquidity() lacks the proper slippage
tolerance mitigation, exposing it to sandwich attacks. The
market conditions could limit the impact.

High

Description
UniswapV2 Router02’s removeLiquidity API takes the amountMin argument, which is compared
with the yields of each assets redeemed and reverts the transaction if amountMin is not fulfilled.

In Terraswap, the withdraw_liquidity() API exists for removing liquidity. However, there are
two differences with UniswapV2’s API� First, the API for withdrawing liquidity only exists in the pair,
and the router does not provide an API for withdrawing liquidity. Second, there is no argument
analogous to amountMin and no slippage loss mitigations are performed in
withdraw_liquidity() . The second poses a nontrivial security implication.

If an innocent LP tries to withdraw liquidity under inclement circumstances, he/she may face loss.
Such circumstances are described in the next section, Threat Model and Exploit Scenario.

 DELIGHT LABS � Terraswap Security Audit | 16© 2023 ChainLight, Theori. All rights reserved

Impact
High

The condition for this attack to be successful is equivalent to the conditions described in
TERRASWAP-001 . However, an additional condition must also be present in this case: The difference

in value between the two tokens in the pair must be amplified within a short period of time.

The setting for our scenario is as follows: The pair consists of pools of Token A and Token B. Initially,
Token A and Token B have the same value: both tokens can be bought with 1$ on commodity
exchanges. The following sequence of events lead to an attacker making profit from an innocent
user’s loss:

�1� User1 is a malicious user colluding with a block validator. User1 provides liquidity to the pair by
depositing 10^5 Token A and 10^5 Token B, and gets 10^5 LP token in return.

�2� The victim also provides liquidity to the pair by depositing 10^5 Token A, 10^5 Token B, and
receives 10^5 LP token in return. Currently, the same amount of Token A and Token B exists in the
pool.

 DELIGHT LABS � Terraswap Security Audit | 17© 2023 ChainLight, Theori. All rights reserved

�3� Due to external influences, the price of Token A drops to 0.5$ and the price of Token B increases
to 1.5$.

�4� Due to this price fluctuation, liquidity providers will be motivated to withdraw liquidity. Because
the victim is currently a liquidity provider, he/she will also attempt to withdraw liquidity as soon as
possible, and thus issues a transaction holding the withdraw_liquidity message. The victim
expects to redeem the same amount of Token A and Token B because at the point of issuing, the
amount of both assets held by the pool are same.

�5� The malicious validator receives victim’s transaction, and instead of executing it right away, it
reorders the transaction to make profit. First, a swap transaction that swaps a large amount of Token
A into Token B. This results in the pool having more Token A than Token B. Afterwards, the victim’s
withdraw liquidity transaction is executed. Then, user1 restores the balance within the pool and
redeems its LP tokens.

�6� Until �2�, the total asset value held by user1 and victim were equal, because they both held the
same amount of LP tokens. However, user1 received more Token B than Token A, which resulted in a
loss for the victim and a win for user1. We can see this as a form of ‘forced’ impermanent loss for the
victim.

Recommendation
�1� There is no API for liquidity withdrawal on Terraswap’s router. To reduce the gap between
UniswapV2 and Terraswap, we recommend implementing one. �2� As in UniswapV2 Router02’s
removeLiquidity API, slippage loss mitigations must be implemented. We recommend

implementing slippage loss mitigation in the same fashion. �Taking the amountMin argument)

Patch
Fixed

The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/2ca0a8e2a007c7bc3cba0b4f60a8605d6b978e87

 DELIGHT LABS � Terraswap Security Audit | 18© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/2ca0a8e2a007c7bc3cba0b4f60a8605d6b978e87

#3 TERRASWAP-003 Pool can be emptied via a huge swap

ID Summary Severity

TERRASWAP-003
Truncated division breaks the CPMM invariant leading to the
free swap.

High

Description
During swap, the value return_amount is computed prior to performing actual asset movement.
return_amount is the amount of ask asset that is given to the user excluding commission. If
return_amount is equal to the ask pool size, the ask pool size becomes 0 which breaks the CPMM

invariant. Theoretically, it is impossible to make the ask pool size to become 0 as x and y cannot
become 0 in the equation xy=k>0. However, the following code makes it is possible to make x or y
become 0 as integer divisions result in truncations.

 // offer => ask// offer => ask
 // ask_amount = (ask_pool - cp / (offer_pool + offer_amount)) * (1 - com// ask_amount = (ask_pool - cp / (offer_pool + offer_amount)) * (1 - com
mission_rate)mission_rate)
 letlet cp cp:: Uint256Uint256 == offer_pool offer_pool ** ask_pool ask_pool;;
 letlet return_amount return_amount:: Uint256Uint256 == ((Decimal256Decimal256::::from_uint256from_uint256((ask_poolask_pool))
 -- Decimal256Decimal256::::from_ratiofrom_ratio((cpcp,, offer_pool offer_pool ++ offer_amount offer_amount))))
 ** Uint256Uint256::::oneone(());;

It substitutes from the ask_pool the amount of ask assets that should remain after the swap. In
the world of real numbers, the second operand of the substitution can never become zero, as
division of two positive real numbers can never become zero. However, in the world of Uint256 , as
the remainder of division is discarded, it is possible for the second operand to become zero.

 DELIGHT LABS � Terraswap Security Audit | 19© 2023 ChainLight, Theori. All rights reserved

Impact
High

In order to execute a swap that causes the return_amount to become 0, two conditions must be
satisfied: first, offer_pool + offer_amount must be substantially larger than offer_pool *
ask_pool . Second, return_amount must be small so that computed commission is rounded down
to zero. It is nearly impossible to satisfy both conditions at once. Thus, the attack must be performed
in two stages. The first stage requires shrinking the ask pool size to a small but nonzero value. The
second stage performs a small swap that empties the ask pool.

The feasibility of the first stage depends on the initial pool size. The amount of offer asset required
for this stage is linearly proportional to the size of the ask pool. Thus, in most cases the attack will
be infeasible as it requires a substantial amount of capital. However, under vulnerable settings such
as a small liquidity pool or a large difference between asset decimals, there exists a possibility.

The impact of this attack is that it renders the target pool dysfunctional. Once a pool size becomes 0,
provide_liquidity and swap functionalities are inaccessible. In this situation, the owner of the

pair can make one of two choices, each of which results in the same amount of loss.

The first choice is to leave the pair dysfunctional and do nothing. Then, it becomes possible for an
attacker to drain all funds from the pair. It can be done by first pushing a small amount of funds to
make the pool nonzero again, and make swaps in the reverse direction. For example, let’s assume
that a pair has 0 Token A and 1000 Token B. Then, an attacker sends 1 Token A to the pair to make it
have 1 Token A and 1000 Token B. Afterwards, the attacker swaps 1 Token A and gets 500 Token B in
return, which is approximately half of the pair’s TVL. Repeating this process will drain the pair.

The second choice is to push an adequate number of assets to restore the balance between the
pools. However, this results in an identical cost as in the first case. Let’s assume the same situation
where a pair has 0 Token A and 1000 Token B, and the value ratio of Token A and Token B in another
DEX is 1�1. Then, to restore balance the pair owner must push 1000 Token A, which has the same
value as 1000 Token B. In other words, to recover a pair from such conditions, it requires funds
commensurate to the current TVL of the pair. Thus, restoring the pair is as costly as abandoning it.

 DELIGHT LABS � Terraswap Security Audit | 20© 2023 ChainLight, Theori. All rights reserved

Recommendation
We recommend modifying the method of computing return_amount in compute_swap . Although
the fundamental equation is equivalent with the original code, its integer behavior is different.

 // offer => ask// offer => ask
 // ask_amount = (ask_pool - cp / (offer_pool + offer_amount)) * (1 - co// ask_amount = (ask_pool - cp / (offer_pool + offer_amount)) * (1 - co
mmission_rate)mmission_rate)
 -- letlet cp cp:: Uint256Uint256 == offer_pool offer_pool ** ask_pool ask_pool;;
 -- letlet return_amount return_amount:: Uint256Uint256 == ((Decimal256Decimal256::::from_uint256from_uint256((ask_poolask_pool))
 -- -- Decimal256Decimal256::::from_ratiofrom_ratio((cpcp,, offer_pool offer_pool ++ offer_amount offer_amount))))
 -- ** Uint256Uint256::::oneone(());;
 ++ letlet return_amount return_amount:: Uint256Uint256 == ((ask_pool ask_pool ** offer_amount offer_amount)) // ((offer_pooffer_po
ol ol ++ offer_amount offer_amount));;

In the original method, it is possible for the second operand of substitution to become zero which
results in a ‘round-up’ like behavior for the entire expression. However, for the proposed method,
return_amount can never be ask_amount unless offer_pool is zero due to a ‘round-down’

like behavior for the entire expression. In other words, the equation is hardened by reordering the
necessary computations.

Patch
Fixed

The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/1f7e79f76f4de13e1aa7b0af859e124b9eb2754c

 DELIGHT LABS � Terraswap Security Audit | 21© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/1f7e79f76f4de13e1aa7b0af859e124b9eb2754c

#4 TERRASWAP-004 Router should adopt the deadline argument

ID Summary Severity

TERRASWAP-004
Lack of deadline parameter allows the block producer to
arbitrarily delay the victim user’s transaction.

Medium

Description
If the execution of an end-user’s transaction is delayed for a long period of time, it can result in
undesirable effects such as loss of funds. Thus, UniswapV2’s router prevents a transaction from
being delayed to a certain extent by taking an argument called deadline . In contrast, Terraswap
does not take any safety measures similar to this.

Impact
Medium

An example of a delayed contract resulting in a loss of funds is as follows. Due to external
influences, the values of assets within a pair can fluctuate. If a liquidity provider’s request to
withdraw liquidity is delayed, the pair may transition into a state that is not in favor of the liquidity
provider. Such delays may be amplified by malicious block validators. Such block validators will try to
convert the loss of innocent users into their profit, which is discussed extensively in TERRASWAP-
002 and TERRASWAP-003 .

Recommendation
A fix to this issue would be to implement the deadline argument and relevant checks. This would
also result in reducing the gap between UniswapV2 and Terraswap. An alternative solution would be
to use the timeout block height field in the transaction. This method is superior when compared to
the former in terms of gas consumption. However, it has two downsides: First, the timeout block
height is a per-transaction field. Thus, it would be insufficient to a user who wishes to include
multiple messages with different timeouts within a single transaction. Second, the concept of block
numbers is less intuitive than time to an end-user who is not familiar of blockchain internals.

References
Organize related materials

 DELIGHT LABS � Terraswap Security Audit | 22© 2023 ChainLight, Theori. All rights reserved

Patch
Fixed

The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/c8c4cc6690a48d2729cd3f4094846e9de5a92e53

 DELIGHT LABS � Terraswap Security Audit | 23© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/c8c4cc6690a48d2729cd3f4094846e9de5a92e53

#5 TERRASWAP-005 Commission is rounded down in compute_swap

()

ID Summary Severity

TERRASWAP-005
Truncated division in swap commission calculation leads to
minuscule loss for the liquidity providers.

Low

Description
To overcome the absence floating point data types in WASM, the contract uses fixed point decimals.
COMMISION_RATE is fixed to 0.3% in Terraswap pair, and thus when calculating
commission_amount in the compute_swap function, return_amount is multiplied by 3 and 1000

to replace the decimal operation. If the expression return_amount * 3 has a nonzero remainder
(when divided by 1000�, truncation occurs, resulting in a small loss of value less than 1 for the pair.
This results in a small profit for the swap user.

Impact
Low

The amount of loss accrued per transaction is timid and is guaranteed to be less than 1. Thus, we
have evaluated the severity of this issue as low. One may claim that attackers can elide commission
for the entire swap by splitting the entire swap amount to multiple small amounts. However, although
this causes a loss to the pair, it would not benefit the attacker due to increased gas price, making it
an unrealistic exploit scenario.

Recommendation
When computing commission_amount , it must be increased by 1 if a nonzero remainder is left
during division. This is equivalent to rounding-up the commission amount, whereas the current
implementation computes in a round-down fashion.

Patch
Fixed

 DELIGHT LABS � Terraswap Security Audit | 24© 2023 ChainLight, Theori. All rights reserved

The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/8aac63025359efe1d44862a92a0cb9a227da4cfb

 DELIGHT LABS � Terraswap Security Audit | 25© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/8aac63025359efe1d44862a92a0cb9a227da4cfb

#6 TERRASWAP-006 Insufficient integer overflow handling in provi

de_liquidity()

ID Summary Severity

TERRASWAP-006
provide_liquidity() does not handle the integer

overflow properly.
Informational

Description
In Terraswap pair’s provide_liquidity API, during the very first liquidity provision, an integer
overflow can occur if the product of the two assets’ amounts exceeds 2^256-1 .

letlet share share == ifif total_share total_share ==== Uint128Uint128::::zerozero(()) {{
 // Initial share = collateral amount// Initial share = collateral amount
 Uint128Uint128::::fromfrom((((depositsdeposits[[00]]..u128u128(()) ** deposits deposits[[11]]..u128u128(())))..integer_sqrtinteger_sqrt(())))
 // integer over flow// integer over flow
}}

Impact
Informational

This problem is difficult to consider as a security issue because an asset flow with such magnitudes
is unrealistic. Also, a liquidity provider can avoid the panic by splitting the assets into smaller units
that does not result in overflows. However, we recommend fixing this issue nonetheless in
consideration of programmatic correctness and exceptional situations (such as the case where the
amount of tokens minted is abnormally high due to price inflations).

 DELIGHT LABS � Terraswap Security Audit | 26© 2023 ChainLight, Theori. All rights reserved

Recommendation

fnfn compute_swapcompute_swap((
 offer_pooloffer_pool:: Uint128Uint128,,
 ask_poolask_pool:: Uint128Uint128,,
 offer_amountoffer_amount:: Uint128Uint128,,
)) ->-> ((Uint128Uint128,, Uint128Uint128,, Uint128Uint128)) {{
 letlet offer_pool offer_pool:: Uint256Uint256 == Uint256Uint256::::fromfrom((offer_pooloffer_pool));;
 letlet ask_pool ask_pool:: Uint256Uint256 == ask_pool ask_pool..intointo(());;
 letlet offer_amount offer_amount:: Uint256Uint256 == offer_amount offer_amount..intointo(());;

 letlet commission_rate commission_rate == Decimal256Decimal256::::from_strfrom_str((COMMISSION_RATECOMMISSION_RATE))..unwrapunwrap(());;

 letlet cp cp:: Uint256Uint256 == offer_pool offer_pool ** ask_pool ask_pool;;
}}

In the compute_swap function of the Terraswap pair, integer overflow handling is implemented
adequately. In order to prevent an integer overflow from occurring in the expression offer_pool *
ask_pool , the operands are casted to Uint256 prior to calculation.

It is possible to prevent integer overflows in the same manner. However, because integer_sqrt is
only implemented for primitive integer types, it must be newly implemented for Uint256 . The
following is an example of a working implementation. However, safety validation and gas cost
optimization are not performed, so it is recommended to exercise extreme caution upon using it.

fnfn integer_sqrt_for_uint256integer_sqrt_for_uint256((numnum:: Uint256Uint256)) ->-> Uint128Uint128 {{
 useuse stdstd::::opsops::::ShlShl;;

 // Compute bit, the largest power of 4 <= n// Compute bit, the largest power of 4 <= n
 letlet max_shift max_shift:: u32u32 == 255255;;
 letlet one one:: Uint256Uint256 == Uint128Uint128::::newnew((11))..intointo(());;
 letlet two two:: Uint256Uint256 == Uint128Uint128::::newnew((22))..intointo(());;

 // Compute leadning_zeros by first computing leading zeros of top 128 bi// Compute leadning_zeros by first computing leading zeros of top 128 bi
ts and then the low 128 bitsts and then the low 128 bits
 letlet mutmut leading_zeros leading_zeros;;
 letlet modulus modulus:: Uint256Uint256 == two two..powpow((128128));;
 letlet top top:: Uint128Uint128 == num num..checked_divchecked_div((modulusmodulus))..unwrapunwrap(())..try_intotry_into(())..unwrapunwrap(())

 DELIGHT LABS � Terraswap Security Audit | 27© 2023 ChainLight, Theori. All rights reserved

;;
 letlet low low:: Uint128Uint128 == num num..checked_remchecked_rem((modulusmodulus))..unwrapunwrap(())..try_intotry_into(())..unwrapunwrap(())
;;
 leading_zeros leading_zeros == top top..u128u128(())..leading_zerosleading_zeros(());;
 ifif leading_zeros leading_zeros ==== 128128 {{
 leading_zeros leading_zeros +=+= low low..u128u128(())..leading_zerosleading_zeros(());;
 }}
 letlet shift shift:: u32u32 == ((max_shift max_shift -- leading_zeros leading_zeros)) && !!11;;

 letlet mutmut bit bit == one one..shlshl((shiftshift));;

 // Algorithm based on the implementation in:// Algorithm based on the implementation in:
 // https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binar// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binar
y_numeral_system_(base_2)y_numeral_system_(base_2)
 // Note that result/bit are logically unsigned (even if T is signed).// Note that result/bit are logically unsigned (even if T is signed).
 letlet mutmut n n == num num;;
 letlet mutmut result result == Uint256Uint256::::zerozero(());;
 whilewhile bit bit !=!= Uint256Uint256::::zerozero(()) {{
 ifif n n >=>= ((result result ++ bit bit)) {{
 n n == n n -- ((result result ++ bit bit));;
 result result == result result..shrshr((11)) ++ bit bit;;
 }} elseelse {{
 result result == result result..shrshr((11));;
 }}
 bit bit == bit bit..shrshr((22));;
 }}
 letlet result result:: Uint128Uint128 == result result..try_intotry_into(())..unwrapunwrap(());;
 resultresult
}}

Patch
Fixed

 DELIGHT LABS � Terraswap Security Audit | 28© 2023 ChainLight, Theori. All rights reserved

The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/3962e4c659181ce7a49769af75cfad1d7125c938

 DELIGHT LABS � Terraswap Security Audit | 29© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/3962e4c659181ce7a49769af75cfad1d7125c938

#7 TERRASWAP-007 Code maturity improvement suggestions

ID Summary Severity

TERRASWAP-007
These are the recommendations to improve the code
maturity for better readability, optimization, and security.
They do not impose any immediate security impacts.

Informational

Description
Typo in assert_minium_receive

The assert_minium_receive function implemented in the router takes minium_receive as its
fourth argument.

We speculate that this naming is a typo, because in the execute_swap_operations function and
ExecuteMsg::AssertMinimumReceive enum variant, a variable which serves the same purpose is

named minimum_receive . We recommend fixing this typo for code maturity maintenance.

Redundant usage of Decimal::from_str in compute_swap

The pair has a fixed commission rate, which is stored as a constant string. Thus, when it is converted
to a decimal data type, the Decimal256::from_str API is called for every time. Because string
processing is an avoidable process when constructing numbers, we recommend refraining from
using from_str .

constconst COMMISSION_RATECOMMISSION_RATE:: &&strstr == "0.003""0.003";;
letlet commission_rate commission_rate == Decimal256Decimal256::::from_strfrom_str((COMMISSION_RATECOMMISSION_RATE))??;;

For example, using the from_atomics API to construct the decimal avoids string processing, which
is better in terms of gas consumption.

letlet commission_rate commission_rate == Decimal256Decimal256::::from_atomicsfrom_atomics((3u643u64,, 33))..unwrapunwrap(());;

 DELIGHT LABS � Terraswap Security Audit | 30© 2023 ChainLight, Theori. All rights reserved

Remove dead code

Dead code increases contract code size, a factor that increases deployment cost. The dead code we
found is a total of three. One of them is in the pair, amount_of is never called and should be
subject to removal. Note that this example was not detected by the compiler or code analyzers (ex.
Clippy) because it is declared as a public function. Thus, such instances must be manually found.

// pair.rs// pair.rs
pubpub fnfn amount_ofamount_of((coinscoins:: &&[[CoinCoin]],, denom denom:: StringString)) ->-> Uint128Uint128 {{
 matchmatch coins coins..iteriter(())..findfind((||xx|| x x..denom denom ==== denom denom)) {{
 SomeSome((coincoin)) =>=> coin coin..amountamount,,
 NoneNone =>=> Uint128Uint128::::zerozero(()),,
 }}
}}

// pair error.rs// pair error.rs
#[error(#[error("Too small offer amount""Too small offer amount")])]
TooSmallOfferAmountTooSmallOfferAmount {{}},,

// pair error.rs// pair error.rs
#[error(#[error("Too small offer amount""Too small offer amount")])]
TooSmallOfferAmountTooSmallOfferAmount {{}},,

Impact
Informational

Recommendation
Apply the fixes suggested in Description .

Patch
Fixed

Typo in assert_minium_receive The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/6ba10d5201f9156bbe5ddd801035b348b6646947

 DELIGHT LABS � Terraswap Security Audit | 31© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/6ba10d5201f9156bbe5ddd801035b348b6646947

Redundant usage of Decimal::from_str in compute_swap The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/763b3f85c89dcbdfa80a7b1a415964ebaf43dbcc

Remove dead code The issue was fixed in commit
https://github.com/terraswap/terraswap/commit/763b3f85c89dcbdfa80a7b1a415964ebaf43dbcc

 DELIGHT LABS � Terraswap Security Audit | 32© 2023 ChainLight, Theori. All rights reserved

https://github.com/terraswap/terraswap/commit/763b3f85c89dcbdfa80a7b1a415964ebaf43dbcc
https://github.com/terraswap/terraswap/commit/763b3f85c89dcbdfa80a7b1a415964ebaf43dbcc

Appendix: Test Methodologies

Testcases
We made a collection of all the test code as well as code coverage reports. Because the repository
contains proof-of-concepts for security issues, we have made it private for now.

https://github.com/dream-academy/terraswap-tc

Methods
The testcases in the repository above mostly consists of python code, which may raise an eyebrow
for cosmwasm developers. One previous method for testing a wasm smart contract is by writing
unit-tests, which are compiled to x86. However, we felt that this method of writing tests is both
insufficient and inefficient. It is insufficient because unit-tests cannot capture all of the semantics of
the cosmwasm architecture. It is inefficient because it increases the LoC of test code due to calls to
mock_* functions and requires an extensive knowledge of the cosmwasm semantics to write tests in
the first place.

An alternative testing method is to deploy contracts on a testnet. Testing on a testnet captures more
semantics than unit-tests and does handles the cosmwasm semantics on behalf of the caller, but has
its downsides nonetheless. First, it is not quick enough due to block creation time. Second,
testcases are hard to reproduce, as reproduction requires re-starting from contract instantiation.
Third, it is impossible to freely modify parameters such as a user’s funds, block number, or a value
within a contract’s storage.

Thus, we created a new testing method that solves all of these problems. This method has three
major novelties: First, contract storage is constructed based on its on-chain current state, which is
fetched via RPC(or LCD� queries. Second, the stack-like submessage passing semantics is
implemented so that invocation of other contracts are done automatically. Third, it is possible to
freely modify states and tx metadata such as bank balances, storage, and message info. Due to
these three characteristics, it is possible to create a lightweight, local ‘fork’ of an existing chain and
execute/instantiate contracts on top of it.

It also has Python bindings which enables uses to write tests in Python.

 DELIGHT LABS � Terraswap Security Audit | 33© 2023 ChainLight, Theori. All rights reserved

https://github.com/dream-academy/terraswap-tc

Revision History

Version Date Description

1.0 December 12, 2022 Initial version of report

1.1 Jul 19, 2023 Code revision

DELIGHT LABS � Terraswap Security Audit | 34© 2023 ChainLight, Theori. All rights reserved

Theori, Inc. (“We”) is acting solely for the client and is not responsible to any other party.
Deliverables are valid for and should be used solely in connection with the purpose for which they
were prepared as set out in our engagement agreement. You should not refer to or use our name
or advice for any other purpose. The information (where appropriate) has not been verified. No
representation or warranty is given as to accuracy, completeness or correctness of information in
the Deliverables, any document, or any other information made available. Deliverables are for the
internal use of the client and may not be used or relied upon by any person or entity other than
the client. Deliverables are confidential and are not to be provided, without our authorization
(preferably written), to entities or representatives of entities (including employees) that are not
the client, including affiliates or representatives of affiliates of the client.

DELIGHT LABS � Terraswap Security Audit | 35© 2023 ChainLight, Theori. All rights reserved

